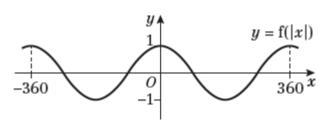
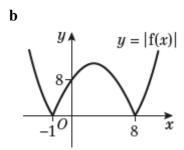
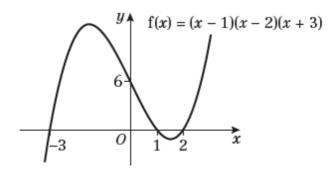

Pure Mathematics 3

Solution Bank

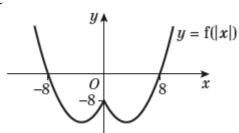


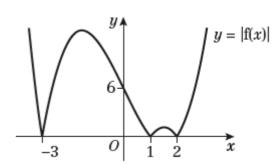

Exercise 2E

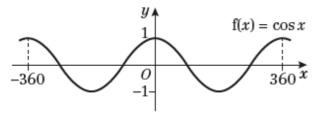
1 a

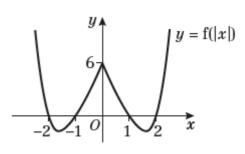


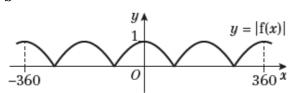
2 c




3 a

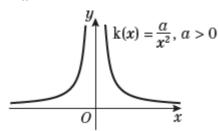

c


b


2 a

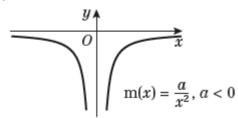
3 c

b



Pure Mathematics 3

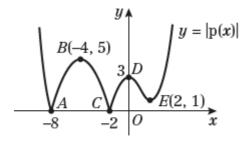
Solution Bank



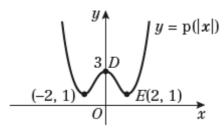
4 a

b There is no need to sketch $y = |\mathbf{k}(x)|$ and $y = \mathbf{k}(|x|)$ as these graphs would match the original graph.

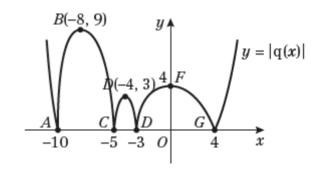
c

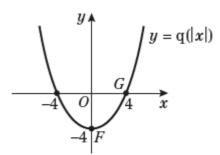


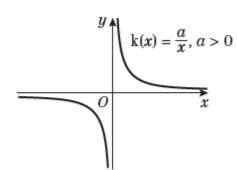
d i $|\mathbf{k}(x)| = |\mathbf{m}(x)|$ is true: $|\mathbf{k}(x)| = \left| \frac{a}{x^2} \right| = \left| \frac{-a}{x^2} \right| = |\mathbf{m}(x)|$

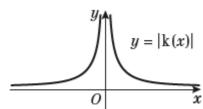

ii k(|x|) = m(|x|) is false: $k(|x|) = \frac{a}{|x|^2} \neq \frac{-a}{|x|^2} = m(|x|)$

iii m(x) = m(|x|) is true: $m(x) = \frac{-a}{|x|^2} = \frac{-a}{|x|^2} = m(|x|)$


5 a

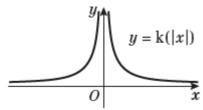

5 b


6 a

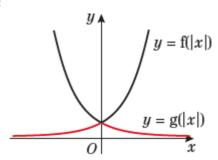

b

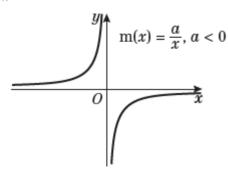
7 a

b

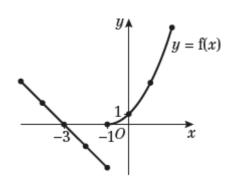


Pure Mathematics 3

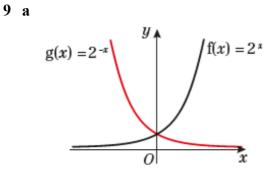

Solution Bank


7 c

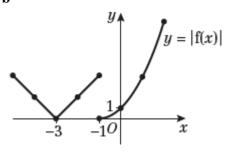
c

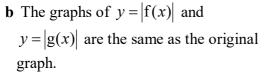

8 a

b y = |m(x)| and y = m(|x|) are

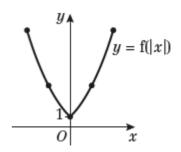

reflections of each other in the

10 a




 $|\mathbf{m}(x)| = -\mathbf{m}(|x|)$

x-axis.



b

c

